Data Matrix Reader Mac 330

The Data Matrix Reader for stationary application

MAC 330 - for tasks beyond the average

The outstanding features of the Data Matrix Code made applications possible which could never be achieved using 1D bar code. These applications became addressable with the introduction of sophisticated readers such as the MAC 330, which represent particularly cost effective solutions for demanding requirements.

- Reading of laser etched or engraved codes
- Reading of exceptionall small codes
- Reading of codes dotpeened or pinstamped into glossy, curved, or irregular surfaces

Reading of laser etched or engraved codes
Reading of exeptionally small codes
Reading of codes dotpeened or pinstamped into glossy, curved, or irregular surfaces

The transfer of decoded data to host systems is very flexible. Specific protocols (for example Siemens 3964) and bus systems have been implemented.

Discontinuous operating mode

In many automated processes, the goods are transported sequentially at very slow speeds or indexed into position. In these cases, reading can be executed in standstill mode and the Reader is not required to provide rapid decode rates.

C-MOS-Technology: high tech on the sensor front

In many automated processes, the goods are transported sequentially at very slow speeds or indexed into position. In these cases, reading can be executed in standstill mode and the Reader is not required to provide rapid decode rates.

MAC 330 uses C-MOS technology for its imaging sensor chip. This enables the construction of a small device but that still overs a number of interesting technical features. Of special note is the possibility to directly address an individual pixel in the sensor chip’s array.

ECC 200 Data Matrix 26 x 26 Code
Flexibility in hard- and software

Optics and illumination form a modular block that can be readily exchanged to facilitate adaptations to different requirements and circumstances. This is especially important when items of interest are coded using direct marking methods such as laser etching or mechanical dot-peening/pinstamping. In addition to its modular front end, the MAC 330 features software with flexible routines that enable reading performance to be optimized for specific environments or operating conditions. That the internal software uses flexible routines to optimize for the specific reading environment. This enlarges the area of use by simultaneously keeping the operators interface as simple as possible.

Technical Data

Mac 330

Dimensions: 60x40x125mm (without plug)
Weight: 300g
Scan distance: 65mm (ND), 45mm (HD)
Depth of field: +/- 10mm when Modul size: >0,35mm
Scan area: 25mm x 16mm (ND) 16mm x 11mm (HD)
Resolution: 0,3mm
Light source: LED-Flash (white Light); flash duration 20ms
Sensor: CMOS
Sensor resolution: 384 x 288 (256 used) Pixel
Evaluation rate: 4Hz
Reading speed: stand still or very slow movement <1cm/sec
Data content: up to 348 numerical, 259 ASCII
Power supply: 24 Volt DC (V min=20V, V max=30V)
Power consumption: 3W
Interfaces: RS232, RS485
In-/Output: 1 opto-coupled Trigger-input, 2 opto-coupled outputs
Videooutput: Composite Video (BAS) BWF 50HZ, 15,75Khz line-frequency
Symbol size: 10x10 bis 48x48 square, 16 x 48 rectangular
Modulsize (min): 0,35mm
Codesize (min): 2,5x2,5mm (HD), 3,2 x 3,2mm (ND)
Quiet zone: 0,6mm
Code placement: 0, 90, 180, 270 degrees; +/- 35 degree
Character set: ASCII, C40; TEXT, X12, EDIFACT, Base 256 nach ISO 646
error correction: ECC200 (Reed-Solomon)

This information is provided by JETEC Corporation
2817 McGaw, Irvine, CA 92614
Tel: 714-979-9611 / Fax: 714-755-5950
Contact: sales@jetec.com
Website: www.jetec.com

Shop Online, Click Here